Chapter 9

Fresnel Reflection

9.0.1 \(\pi \) polarization:

We have from the law of reflection that

\[\theta_i = \theta_r \quad (9.1) \]

We have from Snell’s law that

\[n_1 \sin \theta_i = n_2 \sin \theta_t \quad (9.2) \]
Boundary conditions for the tangential components of \mathbf{H} give us

$$H_i + H_r = H_t$$ \hspace{1cm} (9.3)

or

$$\frac{E_i}{Z_1} + \frac{E_r}{Z_1} = \frac{E_t}{Z_2}$$ \hspace{1cm} (9.4)

or

$$E_t = \frac{Z_2}{Z_1} (E_i + E_r)$$

and

$$E_i \cos \theta_i - E_r \cos \theta_r = E_t \cos \theta_t$$ \hspace{1cm} (9.5)

and

$$E_i \cos \theta_i - E_r \cos \theta_i = \frac{Z_2}{Z_1} (E_i + E_r) \cos \theta_t$$ \hspace{1cm} (9.6)

and defining

$$r = \frac{E_r}{E_i}$$ \hspace{1cm} (9.7)

we have

$$\cos \theta_i - r \cos \theta_r = \frac{Z_2}{Z_1} (1 + r_r) \cos \theta_t$$ \hspace{1cm} (9.8)

and

$$\cos \theta_i - \frac{Z_2}{Z_1} \cos \theta_t = r (\cos \theta_i + \frac{Z_2}{Z_1} \cos \theta_t)$$ \hspace{1cm} (9.9)

and finally

$$r = \frac{Z_1 \cos \theta_i - Z_2 \cos \theta_t}{Z_1 \cos \theta_t + Z_2 \cos \theta_t}$$ \hspace{1cm} (9.10)

If the material is non-magnetic, then

$$r = \frac{n_2 \cos \theta_i - n_1 \cos \theta_t}{n_2 \cos \theta_i + n_1 \cos \theta_t}$$ \hspace{1cm} (9.11)

and writing θ_t explicitly, we get

$$r = \frac{n_2 \cos \theta_i - n_1 \cos \theta_t}{n_2 \cos \theta_i + n_1 \cos \theta_t} \sqrt{1 - \frac{n_1^2}{n_2^2} \sin^2 \theta_i}$$ \hspace{1cm} (9.12)

Plotting this for glass, with $n_1 = 1$, $n_2 = 1.5$, gives
We note that r goes to zero at the Brewster angle; here $\tan \theta_i = \frac{n_2}{n_1}$.

We also define the transmission coefficient

$$t = \frac{E_t}{E_i}$$ \hspace{1cm} (9.13)

which, since

$$E_t = \frac{Z_2}{Z_1} (E_i + E_r)$$ \hspace{1cm} (9.14)

becomes

$$t = \frac{Z_2}{Z_1} (1+r) = \frac{Z_2}{Z_1} \left(1 + \frac{Z_1 \cos \theta_i - Z_2 \cos \theta_i}{Z_1 \cos \theta_i + Z_2 \cos \theta_i}\right) = \frac{2Z_2 \cos \theta_i}{Z_1 \cos \theta_i + Z_2 \cos \theta_i} = \frac{2n_1 \cos \theta_i}{n_2 \cos \theta_i + n_1 \cos \theta_i}$$ \hspace{1cm} (9.15)

9.0.2 σ Polarization

For σ polarization, we have
and here

\[E_i + E_r = E_t \quad (9.16) \]

or

\[\frac{H_i}{Z_1^{-1}} + \frac{H_r}{Z_1^{-1}} = \frac{H_t}{Z_2^{-1}} \quad (9.17) \]

or

\[H_t = \frac{Z_2^{-1}}{Z_1^{-1}}(H_i + H_r) \]

and

\[H_i \cos \theta_i - H_r \cos \theta_r = H_t \cos \theta_t \quad (9.18) \]

and

\[H_i \cos \theta_i - H_r \cos \theta_i = \frac{Z_2^{-1}}{Z_1^{-1}}(H_i + H_r) \cos \theta_t \quad (9.19) \]

and defining

\[r = \frac{E_r}{E_i} = \frac{H_r}{H_i} \quad (9.20) \]

, we have

\[\cos \theta_i - r \cos \theta_i = \frac{Z_2^{-1}}{Z_1^{-1}}(1 + r_r) \cos \theta_t \quad (9.21) \]

and

\[\cos \theta_i - \frac{Z_2^{-1}}{Z_1^{-1}} \cos \theta_t = r(\cos \theta_i + \frac{Z_2^{-1}}{Z_1^{-1}} \cos \theta_t) \quad (9.22) \]
and finally

\[r = \frac{Z_2 \cos \theta_i - Z_1 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t} \]

(9.23)

If the material is non-magnetic, then

\[r = \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} \]

(9.24)

and writing \(\theta_t \) explicitly, we get

\[r = \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} = \frac{\sqrt{1 - \frac{n_2^2}{n_1^2} \sin^2 \theta_i}}{n_1 \cos \theta_i + n_2 \sqrt{1 - \frac{n_2^2}{n_1^2} \sin^2 \theta_i}} \]

(9.25)

The transmittance is

\[t = \frac{E_t}{E_i} \]

(9.26)

and since

\[E_i + E_r = E_t \]

(9.27)

we have

\[t = 1 + r = 1 + \frac{Z_2 \cos \theta_i - Z_1 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t} = \frac{2Z_2 \cos \theta_i}{Z_2 \cos \theta_i + Z_1 \cos \theta_t} \]

\[= \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_i + n_2 \cos \theta_t} \]

Summary
At an interface between two materials, we have, for π polarization

\[r_{12}^\pi = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_2 \cos \theta_1 + n_1 \cos \theta_2} \] \hspace{1cm} (9.28)

and

\[t_{12}^\pi = \frac{2n_1 \cos \theta_1}{n_2 \cos \theta_1 + n_1 \cos \theta_2} \] \hspace{1cm} (9.29)

while for σ polarization, we have

\[r_{12}^\sigma = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2} \] \hspace{1cm} (9.30)

and

\[t_{12}^\sigma = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2} \] \hspace{1cm} (9.31)

9.0.3 Total Internal Reflection (TIR)

σ polarization

Consider the reflection coefficient for σ polarization.

\[r_{12}^\sigma = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2} \] \hspace{1cm} (9.32)

Using Snell’s Law, we can write

\[\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1 \]

\[\cos \theta_2 = \sqrt{1 - \frac{n_1^2}{n_2^2} \sin^2 \theta_1} \] \hspace{1cm} (9.33)

\[r_{12}^\sigma = \frac{n_1 \cos \theta_1 - n_2 \sqrt{1 - \frac{n_1^2}{n_2^2} \sin^2 \theta_1}}{n_1 \cos \theta_1 + n_2 \sqrt{1 - \frac{n_1^2}{n_2^2} \sin^2 \theta_1}} \] \hspace{1cm} (9.34)

Now suppose that $n_1 > n_2$. In this case, if

\[\sin \theta_1 > \frac{n_2}{n_1} \] \hspace{1cm} (9.35)
we have

\[\cos \theta_2 = i \sqrt{\frac{n_1^2}{n_2^2} \sin^2 \theta_1 - 1} \]

(9.36)

and \(\cos \theta_2 \) is imaginary (but \(\sin \theta_t \) remains real), and \(r_{12}^\sigma \) is complex. It is useful to define the critical angle for TIR as

\[\sin \theta_c = \frac{n_2}{n_2} \]

(9.37)

or

\[\theta_c = \sin^{-1} \frac{n_2}{n_1} \]

(9.38)

Now we can write

\[r_{12}^\sigma = \frac{n_1 \cos \theta_1 - n_2 i \sqrt{\frac{n_1^2}{n_2^2} \sin^2 \theta_1 - 1}}{n_1 \cos \theta_1 + n_2 i \sqrt{\frac{n_1^2}{n_2^2} \sin^2 \theta_1 - 1}} = \frac{a - ib}{a + ib} \]

(9.39)

or

\[r_{12}^\sigma = |r_{12}^\sigma| e^{i\phi} \]

(9.40)

We write

\[r_{12}^\sigma = \frac{a - ib}{a + ib} \]

(9.41)

and note that

\[|r_{12}^\sigma| = \sqrt{r_{12}^\sigma r_{12}^{\sigma*}} = 1 \]

(9.42)

So the magnitude of the reflection coefficient is 1. Writing

\[r_{12}^\sigma = \frac{a - ib}{a + ib} = \frac{(a - ib)^2}{a^2 + b^2} = \frac{a^2 - b^2}{a^2 + b^2} - \frac{2iab}{a^2 + b^2} \]

(9.43)

the phase \(\phi \) can be conveniently written as

\[\tan \phi = -\frac{2ab}{a^2 - b^2} = -\frac{2n_1 \cos \theta_1 n_2 \sqrt{\frac{n_1^2}{n_2^2} \sin^2 \theta_1 - 1}}{n_1 \cos^2 \theta_1 - n_2^2 (\frac{n_1^2}{n_2^2} \sin^2 \theta_1 - 1)} = -\frac{2n_1 \cos \theta_1 \sqrt{\frac{n_1^2}{n_2^2} \sin^2 \theta_1 - 1}}{n_1^2 (\cos^2 \theta_1 - \sin^2 \theta_1) + n_2^2} \]

The reflected wave has the same amplitude as the incident wave, but there is an angle-dependent phase shift. The reflection coefficient for the intensity is

\[R^\sigma = r_{12}^\sigma r_{12}^{\sigma*} = 1 \]

(9.44)
All of the incident power is reflected - this is total internal reflection. No power is transmitted.

The transmission coefficient is

$$t_{12}^2 = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2} = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 i \sqrt{\frac{n_2^2}{n_1^2} \sin^2 \theta_1 - 1}}$$

(9.45)

a complex number, which equals 2 at the critical angle of incidence θ_c.

It is interesting to look at the wavevector k_2. From Maxwell’s equations, we have (assuming isotropy and nonmagnetic materials) that

$$k_2^2 = \omega^2 \mu \varepsilon$$

(9.46)

or

$$k_2 = \frac{\omega n_2}{c}$$

(9.47)

The in-plane component of k_2 (in the interface)

$$k_{2x} = k_2 \sin \theta_2 = k_1 \sin \theta_1$$

(9.48)

and, since $\sin \theta_2$ is real, the in-plane component of the wave-vector k_2 is real. Furthermore, θ_2 is such that Snell’s law is satisfied;

$$k_2 \sin \theta_2 = k_1 \sin \theta_1$$

(9.49)

We also have for the normal component k_{2z} of k_2 that

$$k_{2z} = k_2 \cos \theta_2$$

(9.50)

but this is imaginary, since

$$k_{2z} = k_2 i \sqrt{\frac{n_1^2}{n_2^2} \sin^2 \theta_1 - 1}$$

(9.51)

so we have an imaginary normal component of the wave vector. We can also write this as

$$k_{2z} = i \frac{n_1}{n_2} k_2 \sqrt{\sin^2 \theta_1 - \sin^2 \theta_c} = i k_1 \sqrt{\sin^2 \theta_1 - \sin^2 \theta_c}$$

In essence, what happens is the following. As the angle of incidence θ_1 increases, the angle of transmission θ_2 grows. At the critical angle,
\[\theta_1 = \theta_c, \text{ } k_2 \text{ is in the plane of the interface. As the angle of incidence increases further, an imaginary component of } k_2 \text{ appears, normal to the interface. This increases the length of } k_2 \text{ sufficiently so that its projection on the interface can match that of the incident wave.} \]

Note that
\[k_2^2 = k_2 \cdot k_2 = k_{2x}^2 - |k_{2z}|^2 \]
(9.52)

So, indeed, having an imaginary component allows \(k_2 \) to be longer. Substitution gives
\[k_1^2 \sin^2 \theta_1 - k_2^2 \left(\frac{n_2^2}{n_1^2} \sin^2 \theta_1 - 1 \right) = k_2^2 = \frac{\omega n_2}{c} \]
(9.53)
as expected.

The transmitted electric field at the interface is
\[E_t = E_i t_{12} \]
(9.54)
so it is just the incident field multiplied by a complex amplitude. Explicitly, we have
\[E_t = E_{ot} \hat{y} e^{i(k_2 \cdot r - \omega t)} = E_{ot} \hat{y} e^{-k_{2z} z} e^{i(k_2 x - \omega t)} \]
(9.55)
so we have a real wave propagating along the interface, with wave vector
\[k_{2x} = k_2 \sin \theta_2 = k_1 \sin \theta_1 \]
(9.56)
and an exponentially decaying envelope normal to the interface with decay length
\[\zeta = \frac{1}{k_{2z}} = \frac{1}{k_1 \sqrt{\sin^2 \theta_1 - \sin^2 \theta_c}} = \frac{\lambda_o}{2 \pi n_1 \sqrt{\sin^2 \theta_1 - \sin^2 \theta_c}} \]
(9.57)

The \(\mathbf{H} \) field is given, as usual, by
\[\mathbf{H}_t = \frac{1}{\omega \mu_o} k_2 \times E_t \]
(9.58)
or
\[\mathbf{H}_t = \frac{1}{Z_2} \hat{k}_2 \times E_t \]
(9.59)
and
\[\mathbf{H}_t = \frac{1}{Z_2} (\sin \theta_2 \hat{x} + \cos \theta_2 \hat{z}) \times E_t \hat{y} = \frac{1}{Z_2} E_t \sin \theta_2 \hat{z} - \frac{1}{Z_2} E_t \cos \theta_2 \hat{x} \]
(9.60)
so \mathbf{H}_t has a real component along the $z-$ direction, and an imaginary component along the x direction.

Is this still a transverse wave?

Is the relation

$$\nabla \cdot \mathbf{H} = k_2 \cdot \mathbf{H}_t = 0$$

satisfied? Substitution gives

$$k_2 \cdot \mathbf{H}_t = (\frac{1}{Z_2} E_t \sin \theta_2 \hat{z} - \frac{1}{Z_2} E_t \cos \theta_2 \hat{x}) \cdot (k_2 \cos \theta_2 \hat{z} + k_2 \sin \theta_2 \hat{x}) = 0 \quad (9.62)$$

so although there components of \mathbf{H}_t along the wavevector k_2, the dot product is zero.

Power is propagating along the interface, but no power propagates along the $z-$ direction. This is because $\cos \theta_i$ is imaginary, and the average power power propagating in the z-direction will have a time dependence of the form $\cos \omega t \sin \omega t$, whose time average is zero.

9.0.4 π polarization

Note that that here the situation is the same as as for σ polarization, except \mathbf{H} plays the role of \mathbf{E}, and vice versa.