
Chapter 6

Energy Flux

We discuss various ways of describing energy flux and related quantities.

6.0.1 Energy Current Density

The energy current density is given by the Poynting vector

S = E×H (6.1)

where all quantities are real. The Poynting vector gives the instantaneous lo-
cal energy current density (energy/(area× time) [J/(m2s) = W/m2]).flowing
in the direction Ŝ.

6.0.2 Energy Flux

Flux means current, the amount of flowing ’stuff’/time passing some region
of a given (real or imagined) surface. The energy flux is the total radiant
energy/time, that is,

Φ =

∫
S·dA =

∫
(E×H)·dA =

∫
(E×H) · N̂dA (6.2)

where N̂ is the surface normal. The flux is measured in units of [W ].
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6.0.3 Irradiance

Irradiance is the energy flux density, that is, the radiant energy/(area×time)
incident on a (real or imagined) surface. If the surface normal is N̂, the
irradiance is

Ii = S · N̂ =(E×H) · N̂ (6.3)

Irradiance is again measured in [W/m2]. Irradiance is sometimes called
’instantenous intensity’.

6.0.4 Radiance

Radiance is the energy flux density per solid angle.[W/(m2 × steradian)]

6.0.5 Radiant Intensity

Radiant intensity is the energy flux per solid angle [W/steradian]
(radiometry)

6.0.6 Intensity

Intensity is the time avaraged irradiance.(time averaged energy flux density).

I =
1

T

∫ T

0

S · N̂dt = 1

T

∫ T

0

(E×H)·N̂dt (6.4)

Intensity is again measured in [W/m2]

6.0.7 Fluence

Fluence is radiant energy per area of a surface. It is the integrated intensity,

Fl =

∫ T

0

S · N̂dt =
∫ T

0

(E×H)·N̂dt (6.5)

measured in [J/m2].
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6.0.8 Calculating the intensity:

The intensity is given, in general, by

I =
1

T

∫ T

0

S · N̂dt = 1

T

∫ T

0

(E×H)·N̂dt (6.6)

or

I = { 1
T

∫ T

0

Sdt} · N̂ =< S > ·N̂ (6.7)

where we have introduced the time averaged Poynting vector

< S >=
1

T

∫ T

0

Sdt =
1

T

∫ T

0

(E×H)dt

If the electric and magnetic fields are expressed in complex notation, then

< S > =
1

4T

∫ T

0

(E+E∗)×(H+H∗)dt (6.8)

=
1

4T

∫ T

0

(E×H+E∗ ×H+E×H∗+E∗ ×H∗)dt (6.9)

If the fields are of the form

E = E(r)e−iωt (6.10)

and
H = H(r)e−iωt (6.11)

then ∫ T

0

(E×H)dt=
∫ T

0

(E∗×H∗)dt = 0 (6.12)

and
1

T

∫ T

0

(E∗ ×H)dt = E∗(r)×H(r) = E∗ ×H (6.13)

and
1

T

∫ T

0

(E×H∗)dt = E(r)×H∗(r) = E×H∗ (6.14)

and

< S >=
1

4
(E∗ ×H+E×H∗) =

1

2
Re(E×H∗) (6.15)
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Since

∇× E = −∂B
∂t

(6.16)

if the magnetic permeability µ is isotropic, it follows that

∇× E =iµωH (6.17)

and

< S >=
1

2
Re

i

µ∗ω
(E×∇× E∗) (6.18)

If the fields are of the form

E = Eoe
i(k·r−ωt) (6.19)

and
H = Hoe

i(k·r−ωt) (6.20)

it follows that

< S >=
1

2
Re

1

µ∗ω
(E× k∗×E∗) (6.21)

but also

< S >=
1

2
Re

1

µ∗ω
(Eo×k∗×E∗o)

or

< S >=
1

2
Re

1

µ∗ω
((Eo·E∗o)k∗ − E∗o(k∗ · Eo) (6.22)

We can always write k =kk̂. Then

< S >=
1

2
Re

k∗

µ∗ω
((Eo·E∗o)k̂∗ − E∗o(k̂∗ · Eo) (6.23)

Now
k2 = ω2µε (6.24)

and so
k = ω

√
µε (6.25)

so
k∗

µ∗ω
=

√
µ∗ε∗

µ∗
=

√
ε∗

µ∗
=
1

Z∗

and we have

< S >=
1

2
Re

1

Z∗
((Eo·E∗o)k̂∗ − E∗o(k̂∗ ·Eo) (6.26)



35

Now if k̂ is real, then

< S >=
1

2
Re

1

Z∗
((Eo·E∗o)k̂−E∗o(k̂ ·Eo) (6.27)

and if ε is isotropic, then

k · Eo = 0 (6.28)

and

< S >=
1

2
Re

1

Z∗
(Eo·E∗o)k̂ =

1

2
|Eo|2k̂Re (

1

Z∗
) (6.29)

The above is the most frequently used form.
The intensity of light, fallling on a plane whose normal is in the k̂ direc-

tion, is

I =
1

2
Re(

1

Z∗
)(Eo·E∗o) (6.30)
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