Chapter 6

Energy Flux

We discuss various ways of describing energy flux and related quantities.

6.0.1 Energy Current Density
The energy current density is given by the Poynting vector

S=ExH (6.1)
where all quantities are real. The Poynting vector gives the instantaneous lo-

cal energy current density (energy/(area x time) [J/(m?s) = W/m?]).flowing
in the direction S.

6.0.2 Energy Flux

Flux means current, the amount of flowing ’stuff’/time passing some region
of a given (real or imagined) surface. The energy flux is the total radiant
energy/time, that is,

P = /S-dA :/(E x H)-dA :/(E x H) - NdA (6.2)

where N is the surface normal. The flux is measured in units of [I¥].
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6.0.3 Irradiance

Irradiance is the energy flux density, that is, the radiant energy/(areax time)
incident on a (real or imagined) surface. If the surface normal is N, the
irradiance is

;=S-N=ExH) N (6.3)
Irradiance is again measured in [W/m?]. Irradiance is sometimes called
‘instantenous intensity’.

6.0.4 Radiance

Radiance is the energy flux density per solid angle.[WW/(m? x steradian)]

6.0.5 Radiant Intensity

Radiant intensity is the energy flux per solid angle [W/steradian]
(radiometry)

6.0.6 Intensity

Intensity is the time avaraged irradiance.(time averaged energy flux density).

T

Intensity is again measured in [W/m?]

1 /T 1 [T .
]:—/ S-th:—/ (E x H)-Ndt (6.4)
0 T 0

6.0.7 Fluence

Fluence is radiant energy per area of a surface. It is the integrated intensity,
T T
Fl= / S Ndt = / (E x H)-Ndt (6.5)
0 0

measured in [J/m?].
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6.0.8 Calculating the intensity:

The intensity is given, in general, by

1 [T 1 [T .
I =— CNdt = — E x H)-N .
T/Os dt T/O(x)dt (6.6)
or
1 [T N N
I:{?/ Sdt} -N =<8 >N (6.7)
0

where we have introduced the time averaged Poynting vector

1 /7 1 /7
S >=— Sdt = = E xH)dt
<S> T/o T/o( x H)

If the electric and magnetic fields are expressed in complex notation, then

1 T

<S> = — [ (E+E)x(H+H")dt (6.8)
AT J,
1 T
= o7 (ExH+E" xH+ExH+E" x H)dt (6.9)
0

If the fields are of the form

E = E(r)e ™ (6.10)
and
H = H(r)e ™" (6.11)
then
T T
/ (E x H)dt:/ (E*xH")dt =0 (6.12)
0 0
and
1 T
?/0 (E* xH)dt =E*(r) xH(r) =E*xH (6.13)
and
1 [T
?/0 (B x H*)dt = E(r) x H*(r) = E x H* (6.14)
and

1 1
<S8 >= Z(E* xH+E xH") = 3 Re(E x HY) (6.15)
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Since 5B
E=—
V x T

if the magnetic permeability p is isotropic, it follows that
V x E =juwH

and

L
<S>=-Re—(E x V x EY)
2w

If the fields are of the form
E = EOei(k~r—wt)

and
H= Hoei(k~r—wt)

it follows that 1 1
<S>=-Re—(E x k"xE")
2 wrw
but also ] ]
<8 >= —-Re—(E,xk"xE})
2 wrw
or

1 1
= ~Re—((E, E)k* — E*(k* - E,
<8 >= 5 Re (B, B)K —Ej(k' 1)

We can always write k —kk. Then

1 * N N
<S>=-R E, ENk* - EXk*-E,
5 Re (B, )k - Bi(K - E)
Now
k= W pe
and so
k = w\/ue
SO
eo_VEE _ [F 1
and we have )
<8>=3 Re;((EO-E:)f{* —E!(k*-E,)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)
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Now if k is real, then
1 1 *\1, * (1
<SS >= 3 Re ;((EdEo)k —-E!(k-E,) (6.27)

and if € is isotropic, then

k-E,=0 (6.28)

and ) ) )
T Re —(F . F %k —2 17 12k
<SS >= 5 Re 7 (E,-EX)k 2\EO\ kRe (
The above is the most frequently used form. X
The intensity of light, fallling on a plane whose normal is in the k direc-

tion, is

1

=) (6.29)

1.1 .
I =2 Re(;) (B E;) (6.30)
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