
Chapter 1

Waves on a String

We consider an elastic string, with mass per length ρl under constant tension
T , on which a wave is propagating as shown.

We want to derive the equation of motion of the string, and then consider
the properties of the solutions.

1.1 The Equations of Motion

We consider a piece of the string, and examine the forces acting on it.
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We consider the components of the forces acting on the string at the ends.
Since the tension is very nearly constant,

F1y = −T sin θ1 (1.1)

and
F2y = T sin θ2 (1.2)

Since θ = θ(x), expanding F2y in a Taylor’s series gives

F2y = T sin θ2 � T sin θ1 + T cos θ1
∂θ

∂x
dx (1.3)

The net force in the y-direction is

Fy = F2y + F1y = T cos θ
∂θ

∂x
dx (1.4)

Now

tan θ =
∂y

∂x
(1.5)

and if θ is small,

tan θ ≈ sin θ ≈ θ =
∂y

∂x
(1.6)

It follows that
∂θ

∂x
=
∂2y

∂x2
(1.7)

Since
cos θ ≈ 1 (1.8)

we have

Fy = T
∂2y

∂x2
(1.9)
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In the x-direction, we have

F1x = −T cos θ1 (1.10)

and

F2x = T cos θ2 = T cos θ1 − T sin θ2
∂θ

∂x
dx (1.11)

and

Fx = F2x + F1x = −T sin θ2
∂θ

∂x
dx (1.12)

Since θ is small, we neglect this term, and assume that, to lowest order, there
is no motion in the x direction.

We then have the equation of motion

ρldx
∂2y

∂t2
= T

∂2y

∂x2
dx (1.13)

and finally we obtain the wave equation

ρl
∂2y

∂t2
= T

∂2y

∂x2
(1.14)

1.2 Solutions

It is interestring to note that if y is of the form

y = f(x− vt) (1.15)

where f is any continuous twice-differentiable function, then

∂2y

∂x2
= f ′′ (1.16)

where the prime denotes differentiation w.r.t. the argument, and

∂2y

∂t2
= v2f ′′ (1.17)

and therefore

y = f(x− vt) (1.18)
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is a solution of the wave equation so long as

v = ±
√
T

ρl
(1.19)

The quantity v is the wave velocity; it is the speed with which the wave is
moving in the x direction.

Since the wave equation is linear, if

y = f1(x− vt) (1.20)

is a solution, and
y = f2(x− vt) (1.21)

is also a solution, then

y = f1(x− vt) + f2(x− vt) (1.22)

is also a solution.

1.3 Energy and Power

1.3.1 Energy density

The string has mass and it is moving, hence it has kinetic energy. The
kinetic energy of the string, per length, is given by

KE l =
1

2
ρl(

∂y

∂t
)2 (1.23)

Since there is no motion in the x-direction, points on the string only move
in the y-direction. If the slope of a segment changes, the length must also
change. Since it takes work to stretch the string, there is also potential energy
stored in the string. The change in length of a segment is

dl =
√
dx2 + dy2 − dx ≈ 1

2
(
∂y

∂x
)2dx (1.24)

Since the force T moves this distance to stretch the string, the potential
energy stored, per unit length, is

PE l=
1

2
T (

∂y

∂x
)2 (1.25)
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It is interestring to note that if

y = f(x− vt) (1.26)

then

KE l =
1

2
ρl(

∂y

∂t
)2 =

1

2
ρlv

2f ′2 (1.27)

and

PE l=
1

2
T (

∂y

∂x
)2 =

1

2
Tf ′2 (1.28)

and since

v2 =
T

ρl
(1.29)

we find that

KE l =
1

2
ρlv

2f ′2 =
1

2
Tf ′2 = PE l (1.30)

and kinetic and potential energy densities are the same. Note that this result
is only true for a single travelling wave; it is not true if waves travelling in
both directions are present!

1.3.2 Power

It is interestring to consider the power input to the string by the source (the
man waving his arm).

Although he has to exert a force in the x-direction to keep the string taut,
there is displacement in the x-direction, and no associated work.

In the y-direction, he has to exert a force

Fy = −T sin θ � −T
∂y

∂x
(1.31)

and the velocity in the y-direction is

vy =
∂y

∂t
(1.32)

If

y = f(x− vt) (1.33)

then
Fy = −Tf ′ (1.34)
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and

vy = −vf ′ (1.35)

and, remarkably, we find that

vy =
v

T
Fy (1.36)

that is, the velocity is proportional to the force!

That is,

Fy =
T

v
vy = Zvy (1.37)

The quantity

Z =
T

v
=
√
Tρl (1.38)

is the impedance.

The input power is

P =Fyvy =
1

Z
F 2y (1.39)

On the string, the total energy density is

El =
1

2
ρl(

∂y

∂t
)2 +

1

2
T (

∂y

∂x
)2 (1.40)

and if

y = f(x− vt) (1.41)

then

El = T (
∂y

∂x
)2 = Tf ′2 (1.42)

and the total propagating power is

Pp = Elv = vTf ′2 =
1

Z
T 2f ′2 =

F 2y
Z
= Pin (1.43)

and the power propagating in the string is equal to the input power, as
expected.
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1.4 Reflection and Transmission

It is interestring to consider two strings which are joined together, as shown.
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We want to understand what happens when a wave is incident on the inter-
face. We expect that there will be some reflection, so there will be a reflected
wave, and some transmission, so there will be a transmitted wave. There will
therefore be three waves: the incident wave

yi = yi(x− v1t) (1.44)

a reflected wave
yr = yr(x+ v1t) (1.45)

and a transmitted wave
yt = yt(x− v2t) (1.46)

Let us suppose the interface is at x = 0. The boundary conditions at the
interface are as follows:

1. The string is continuous, therefore the amplitude y is continuous.
This means that

yi(−v1t) + yr(+v1t) = yt(−v2t) (1.47)

2. The net force on the interface (whose width is zero) must be zero. This
means that the total force in the y-direction on the interface is zero; that is
T∂y/∂x is continuous. This gives

T1
∂yi(−v1t)

∂x
+ T1

∂yr(+v1t)

∂x
= T2

∂yt(−v2t)
∂x

(1.48)

Boundary condition 1 suggests that the three functions appearing in

yi(−v1t) + yr(+v1t) = yt(−v2t) (1.49)
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have the same time dependence. We assume therefore

yi(−v1t) = g(t) (1.50)

and
yr(+v1t) = rg(t) (1.51)

and
yt(−v2t) = tg(t) (1.52)

where r and t are constants. In this case, clearly boundary condition 1 is
satisfied, so long as

1 + r = t (1.53)

We can now write, in general,

yi(x− v1t) = yi(−v1(−
x

v1
+ t)) = g(− x

v1
+ t) (1.54)

and
yr(x+ v1t) = yr(v1(

x

v1
+ t)) = rg(

x

v1
+ t) (1.55)

and
yt(x− v2t) = yt(−v2(−

x

v2
+ t)) = tg(− x

v2
+ t) (1.56)

A key point here is that the time dependence of all three waves is the same!
(What is different is the coefficient of the spatial coordinate.) We can now
write the reflected and transmitted waves in terms of the incident one:

yr(x+ v1t) = rg(
x

v1
+ t) = ryi(−v1(+

x

v1
+ t)) = ryi(−x− v1t) (1.57)

where we have just replaced (− x
v1
+ t) in the argument of yi by (+

x
v1
+ t),

and

yt(x− v2t) = tg(− x

v2
+ t) = tyi(−v1(−

x

v2
+ t)) = tyi(

v1
v2
(x− v2t)) (1.58)

Note that the reflected wave is reversed - the argument is −x − v1t; the
spatial variable has changed sign. Also, notice that the transmitted wave is
contracted/expanded in the x−direction by the ratio of v1/v 2. (We acknowl-
edge Shuang Zhou for pointing this out!)

So if we know yi, we can determine yr and yt if the constants r and t are
known.
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We now consider boundary condition 2. This becomes

T1
∂g(−x/v1 + t)

∂x
|0− + T1r

∂g(+x/v1 + t)

∂x
|0− = T2t

∂g(−x/v2 + t)

∂x
|0+ (1.59)

or

(−T1
v1
+ r

T1
v1
)g(t) = −tT2

v2
g(t) (1.60)

and
Z1(1− r) = Z2t (1.61)

or

1− r =
Z2
Z1
t (1.62)

Solving this simultaneously with

1 + r = t (1.63)

gives, for the reflection coefficient r,

r =
Z1 − Z2
Z1 + Z2

(1.64)

The magnitude of the reflected wave is therefore determined by the im-
pedance mismatch between the strings. If the impedance is the same (even
though the tensions and mass densities may be different) there is no reflec-
tion. The transmission coefficient t is

t =
2Z1

Z1 + Z2
(1.65)

If a single string is tied to the wall, we can regard the wall as a string of
infinite mass density. In this case, Z2 is infinite, and r = −1 and t = 0.

It is useful to look at power at the interface.
The incident power, from the incident wave, is

Pi = (
1

2
ρl(

∂yi
∂t
)2 +

1

2
T1(

∂yi
∂x
)2)v1 = T1v1(

∂yi
∂x
)2 =

T1
v1
g′2 = Z1g

′2 (1.66)

the reflected power is

Pr = T1v1(
∂yr
∂x
)2 = Z1r

2g′2 (1.67)
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and the transmitted power is

Pt = T2v2(
∂yt
∂x
)2 = Z2t

2g′2 (1.68)

and since

1− r2 =
Z2
Z1
t2 (1.69)

we see that
Pi = Pr + Pt (1.70)

as expected. Energy conservation is therefore implicit in the wave equation
and boundary conditions.

Although the material is characterized by two quantities, ρl and T , it is
useful instead to think of it as being characterized by the wave velocity

v =

√
T

ρl
(1.71)

and the impedance
Z =

√
Tρl (1.72)

The efficiency of energy transfer to and from the material depends on the
impedance match between the source and the material.

It is useful to think of the tension T in terms of the strain e = ∆l/l and
Young’s modulus; if the cross-sectional area of the string is A, then

T = eY A (1.73)

and the mass per length ρl can be written in terms of the density ρ as

ρl = ρA (1.74)

In terms of bulk properties, then, we get for the wave velocity

v =

√

e
Y

ρ
(1.75)

and for the impedance
Z = A

√
eY ρ (1.76)

The units of impedance are momentum density × area.
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1.4.1 Counterpropagating Waves

Consider two waves, propagating in opposite direction. Then

y = f1(x− vt) + f2(−x− vt) (1.77)

The kinetic energy per length is

KE l =
1

2
ρ(
∂y

∂t
)2 =

1

2
ρ(−vf ′1 − vf ′2)

2 =
1

2
ρv2(f ′21 + 2f

′
1f
′
2 + f ′22 ) (1.78)

the potential energy per length is

PE l =
1

2
T (

∂y

∂x
)2 =

1

2
T (f ′1 − f ′2)

2 =
1

2
T (f ′21 − 2f ′1f ′2 + f ′22 ) (1.79)

and nothing the ρv2 = T , the total energy is

El = Tf ′21 + Tf ′22 = El1 + El2 (1.80)

Due to the cancellation of the cross terms, the total energy of the sum of the
two counterpropagating waves is just the sum of the energies of the individual
waves. This is NOT the case if the waves are travelling in the same direction..

1.5 Summary

Transverse waves on a string obey the wave equation

T
∂2y

∂x2
= ρ

∂2y

∂t2
(1.81)

Solutions are functions of the form

y = f(x± vt) (1.82)

where the wave velocity is

v =

√
T

ρ
(1.83)

and the impedance is
Z =

√
Tρ
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A useful form is
y = yo cos(kx− ωt) (1.84)

where

k =
2π

λ
(1.85)

is the wavenumber and

ω =
2π

T
= 2πf (1.86)

is the angular frequency. Clearly

v =
ω

k
= λf (1.87)

They carry kinetic and potential energy; these are, per length,

KE l =
1

2
ρl(

∂y

∂t
)2 (1.88)

and

PE l =
1

2
T (

∂y

∂x
)2 (1.89)

If a wave y = yi(x− v1t) is incident on an interface, there will be a reflected
wave

yr = ryi(−x− v1t) (1.90)

and a transmitted wave

yt = tyi(
v1
v2
(x− v2t)) (1.91)

where the reflection coefficient is

r =
Z1 − Z2
Z1 + Z2

(1.92)

and the transmission coefficient is

t =
2Z2

Z1 + Z2
(1.93)

The reflected plus the transmitted power is equal to the incident power; that
is, energy is conserved by solutions of the wave equation with the appropriate
boundary conditions.


