Optics I Theory CPHY 62250/72250 Assignment 1

Peter Palffy-Muhoray Due: Sept. 16, 2018

September 9, 2018

1. The function y = f(x) is shown below.

Give the expression for y if y is a travelling wave, travelling with velocity v, as shown below $\mathcal Y$ |

2. A long string has mass density $\rho = 10g/m$ and tension T = 1N.

Two triangular waves are travelling in opposite directions on the string as shown below.

The amplitude (maximum vertical displacement) is 1m, the slope is 45° .

- a. What is the velocity of transverse waves travelling on the string?
- b. What is the impedance of the string?
- c. What is the kinetic energy of each triangular wave?
- d. What is the potential energy of each triangular wave?
- e. Describe, in words, what the string looks like at the instant the triangular waves are on top of each other.
- f. Calculate the total energy in the string at the instant the triangular waves are on top of each other.
- 3. Two strings are joined together, with $\rho_1=10g/m$ and tension $T_1=1N$ and $\rho_2=60g/m$ and $T_2=1.5N$. A square pulse is travelling along string 1 as shown below.

Sketch, in 5 figures, what happens before, during, and after the pulse reaches the interface.